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Abstract. The behaviour of the solution of the Faddeev equations for the three-body 
problem if one particle mass goes to infinity has been investigated. It is shown that this 
solution has no continuous passage to the limit considered. It is also shown that for 
obtaining the required amplitude of scattering of two light particles by an infinitely heavy 
particle it is necessary to rearrange the Faddeev equations and to reduce them to the 
equations of the problem of two particles in a field. 

1. Introduction 

It is known that many atomic phenomena and nuclear reactions involving heavy ions, 
as well as the reactions of interaction of quantum particles with a solid, can be 
considered as three-body problems under the assumption that the mass of one of the 
particles is infinitely large. It would appear that for the theoretical description of the 
above-mentioned processes one may use the integral Faddeev equations written down 
for the case of three particles of finite mass, if one lets the mass of one of the particles 
go to infinity in these equations. However, as has been demonstrated by Komarov 
etal(1980a, 1981a), such equations totally lose the properties of the original Fredholm 
system of equations of the three-body problem. For the numerical solution with 
familiar methods these equations should be rearranged and reduced to the equations 
of the problem of two particles in an external field. 

This result can be explained by the fact that the passage from the problem of three 
bodies of finite mass to the problem in which one particle becomes infinitely heavy 
is not continuous. 

Firstly, the particle whose mass tends to infinity ceases to be quantum in the limit. 
This is reflected by the fact that, for example, in the method of secondary quantisation 
the creation and annihilation operators of such a particle become c numbers. 

Secondly, if the mass of one of the particles goes to infinity, in the problem of 
three bodies with finite masses there is no invariance of three equivalent coordinate 
systems and, in addition, the law of conservation of momentum ceases to apply. 

Thirdly, the Faddeev equations in which the mass of one particle goes to infinity 
become singular perturbed equations and, as has been shown by Vasil’yeva and 
Butuzov (1973), can have solutions which do not satisfy the given boundary conditions. 
It is worth noting that similar singularities arise in the Faddeev equations in the case 
of the Coulomb interaction between particles. 
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However, as will be demonstrated below, in contrast to the Coulomb three-body 
problem the Faddeev equations for the scattering of two light particles by a third 
massive particle can be rearranged and reduced to numerically solvable equations of 
the problem of two bodies in an external field. 

2. The form of singularities in the Faddeev equations for the case of scattering of 
two particles by a massive particle 

Consider the problem of scattering of three particles, one of which has an infinitely 
large mass, Let us write the Hamiltonian of this three-body problem in the momentum 
representation, having chosen as independent variables the momenta p1 and p2 of 
light particles 1 and 2 with respect to a third massive particle: 

H(p1, p2) =HO(pl, p2)+ v13(p1) + v23(p2) + v12(p1 -p2) 

H d p  1, ~ 2 )  = P :/2m 1 + ~ : / 2 m 2  + (P ip2)/M3. (1) 

Here ml, m2 and M3 are the masses of particles 1, 2 and 3, and Vij are the potentials 
of interaction between the particles (subsequently  VI^ = VI, V23 

For determining the scattering operator T ( E )  of this system there is a Lippmann- 
Schwinger equation 

V2). 

T (E)=(V1+  vz+  VlZ)+(Vl+ v2+ V12)(3O(E)T(E) (2) 

where %i0(E) = (E -HO+iO)-’, and E is the total energy. 

scattering operator 
The solution of the integral equation for the corresponding matrix element of the 

T(pl ,P2;P; ,P; ;E)  
involves in the present case the amplitudes of uncoupled processes, in other words, 
the function T ( p l ,  p2; p i ,  p ;  ; E) has singular terms which will be designated as 
T’(pl ,p2;p; ,p; ;E) .  Here ( p ; , p ; ; E )  and (p1 ,p2;E)are  themomentaof theparticles 
and the total energy, respectively, in the final and initial states. Then, obviously, 

(3) 

where T(p l ,p2 ;p ; ,p ; ;E)  is the amplitude of the fully coupled processes. It is thus 
clear that equation (2), written in the momentum representation for the function 
T ( p l ,  p2; p i , p ;  ; E), contains the implicit singular function T ’ ( p l ,  p2; p i ,  p i  ; E). The 
rearrangement of the Lippmann-Schwinger equation, as proposed by Faddeev, was 
intended to single out the function T‘ and to obtain equations for the amplitude f 
(Faddeev 1963). Indeed, the passage from the operator T to the sum of the form 

(4) 
where for the terms on the right-hand side of equation (4) there is a system of 
equations 

T1= t l  + t190(T2 + T12) 

T(p1, p2; p ; , p ;  ; E )  = T’(p1, p2; p i ,  p ;  ; E )  + f‘(p1,p2;p;, p ;  ; E )  

T ( E )  = Tl(E) + T2(E) + T,2(E) 

T2 = t 2  + f 2 9 O ( T 1 +  T12) Ti2 = f 1 2 +  f12(30(T1+ T2) 

( 5  1 
made it possible to single out the amplitudes of uncoupled processes in the problem 
of three bodies with finite masses explicitly. These amplitudes are the matrix elements 
of the free terms in the system ( 5 ) .  
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However, in the case M3 + CO, in the system there is one more uncoupled process 
corresponding to the independent scattering of particles 1 and 2 by massive particle 
3. The scattering amplitude of such a process on the energy shell is of the form 

-2.rris(E1 -E; )(p1It1(Ed/Pi )(pzlt~(E -El) /p;)  (6)  

where El is the energy of particle 1. 
Obviously, in equations ( 5 ) ,  written in the momentum representation, this ampli- 

tude (6) is implicit and cannot be singled out by the iteration method. It thus appears 
that it is impossible to solve equations of the form ( 5 )  numerically for the case M3 + CO. 
Equations ( 5 )  ought to be rearranged so as to single out the amplitude of the uncoupled 
process just mentioned. 

It will be shown that equations ( 5 )  for M3 + CO do contain singular terms. For this 
purpose, consider the special case VIZ = 0. With this assumption, equations ( 5 )  in the 
momentum representation are transformed to 

Tl(P1, p 2 ;  Pi, p ;  ; E )  

= ( 2 . r r ) 3 s ( ~ 2 - ~ ; ) t l ( ~ 1 , ~ ;  ;E-p ; /2md 

d$Y tl(p1, p Y ;  E -p~/2m~)T2(pY, P Z ;  p i ,  p ;  ; E) +lm E -pY2/2ml-p:/2m2+i0 

T z ( P ~ , P z ; P ~ , ~ ;  ; E )  

= ( 2 . r ) 3 ~ ( ~ l - ~ ' l ) f 2 ( ~ ~ , ~ ; ;  E -p?/2m1)  

(7) 

Assume that the energy is related to the momenta of the particles in the final state 
by the relation 

d2pS ~Z(PZ,  P I ;  E - P ~ / ~ ~ I ) T I ( P I ,  p i ;  p i , & ;  E) +lm E -p:/2ml-pS2/2m2+i0 

E = p i2 / 2 m + p i2/ 2m 2. (8) 
Noting that the sum of the amplitudes TI + T2 on the energy shell must be a singular 
function, assume that 

Tl(P1, p2;p;,p; ; E )  

= ( 2 . r r ) 3 s ( ~ ~ - ~ ; ) t l ( ~ 1 ,  p i ;  E-p:/2md 

+rlip1, p2;p'l, P;; E)(~ ;~ /2m~-p2 /2m2+iO) - '  

Tz (~ i ,pz ;p i ,p ; ;  E) 

= (2.rrI3s(p1 -pi ) f2 (~2 ,  p6 ; E - p : / 2 m d  

+ ~ z ( P I , P ~ ; P ~ ,  p i ;  E)(p12/2ml-p:/2ml+iO)-1. (9) 
Substituting (9) into (7) yields for rl and r2 a system of integral equations of the form 

~ I ( P I , P Z ; P I , P ~ ; E )  
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Thus, the solution of the form (9) is the required physical solution. By direct substitu- 
tion it is easy to show that the functions (9) satisfy both the non-homogeneous equation 
( 5 )  and the corresponding homogeneous equation to within the terms equal to zero 
in terms of generalised functions. It is this statement that was proved earlier by 
Komarov et a1 (1980a) for the equations, similar to (lo), written for wavefunctions. 

The result obtained above indicates vividly that the integral Faddeev equations 
for three particles of finite mass, which have the physical solution in terms of classical 
Holder functions, when one particle mass goes to infinity are transformed to singular 
equations of the form (7), which have the required physical solutions of the form (9) 
in terms of generalised functions. 

3. Manifestation of singularities in the Faddeev equations for the case of scattering 
of two particles by a massive particle 

In 0 2 i t  was shown that the singular amplitude, which is implicit in equations ( 5 )  for 
M3-$co, is the solution of the system (10) obtained from ( 5 )  at VIZ= 0. This result 
is a heuristic consideration for determining the method of rearrangement of the 
Lippmann-Schwinger equation ( 2 )  for M 3 + m  in order to single out the amplitudes 
of all uncoupled processes explicitly in the free terms of equations. Such a method 
of rearrangement must consist in the following (Komarov er a1 1980b). The total 
scattering operator T ( E )  in the present case (M3 --* CO) must be expressed by two terms 

(14) 

Substituting (14) into the Lippmann-Schwinger equation shows that the first term 
T,1,2,(E) must have as a free term and kernel the scattering operator for the system 

T ( E )  = T,I,z,(E) + T I Z ( J ~ ) .  
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of two light particles in the field of massive particle 3 at V12 = 0 

T(1.2) = 9-12 +YlzgoT12. (15) 

The second term must satisfy the equation 

Ti2 = t i 2  + fizgoT~1,~).  (16) 

In equation (15), the operator F12 in turn satisfies the equation 

The solution of this equation can be found if the operator Y12(E) is expressed in 
terms of the corresponding total Green function %(1,2)(E). Since for the system of 
two independently scattered particles the relation 

holds, where 

then we have 

Calculating the matrix elements for the operators T12 and t12 ,  we obtain the expression 
for the amplitudes of all uncoupled processes taking place in the present problem. 

The equations for the scattering of two particles when VIZ f 0 are written and 
examined by Komarov et a1 (1980b, 1981b). 

4. Conclusions 

We now show that the scattering theory results obtained above should be taken into 
account in analysing the concrete processes of interaction of a few particles. Consider, 
for example, the breakup reaction of a coupled system of two particles 1 and 3 of 
mass (ml + M 3 )  under the action of incident particle 2 of mass m 2 .  Assume that the 
mass M3 of particle 3 can be infinitely large. Similar problems are encountered in 
atomic physics. In  particular, in the scattering of electrons by hydrogen-like ions the 
nuclear mass is usually taken to be infinitely large and the interaction of two electrons 
at high energies is described in the first Born approximation. 

Within the framework of the theory of scattering of two particles in a field the 
amplitude of the given process at high energy, found from the first iteration of the 
corresponding integral equations (Komarov et a1 1980b) and equivalent to the ampli- 
tude calculated in the first Born approximation, has the form 

7- = ((Po1po21 V121PIP2). (17) 

Here cpol is the  wavefunction for the bound state of particle 1 in the field, pl, p2 are 
the momenta of the two particles in the final state, and po2 is the momentum of particle 
2 in its initial state. 



2748 A M Popova and Yu V Popov 

Obviously, when V12 = 0, the amplitude T, determined by expression (17), is zero, 
which is consistent with the familiar result from the general theory of the S matrix 
for the case of independent processes. 

Now consider these processes as the three-body problem for M3 + a. Then the 
expression for the amplitude of the given reaction in the Born approximation must 
correspond to the first iterations of the Faddeev equations (Faddeev 1963) and have 
the following representation: 

T ~ ( C ~ O ~ P O ~ / V ~ ~ I P ~ P Z ) + ( ( O O ~ P O ~ I V ~ ~ I P ~ ,  ~ 2 ) .  (18) 

The first term in (18) is fully identical with expression (17) and the second term 
corresponds to the contribution to the amplitude of the process in which the energy 
and momentum transfer is effected with the aid of a third heavy particle. If we now 
put VI2 = 0, the first term in (18) becomes zero and the second remains non-zero. 
This discrepancy between the representations for the amplitude of scattering of two 
particles by a massive particle, written in two different approaches, is explained by 
the fact that the solution of the Faddeev equations for three particles of finite mass, 
found by.the iteration method, does not go continuously into the solution of equations 
obtained for M3 + W. Consequently, the representation (18) for the amplitude of the 
process under consideration cannot be used in the analysis of experimental data if 
M3 + 00. We have given consideration to this result in view of the fact that in atomic 
physics, for describing the processes which reduce to the problem of interaction of 
two particles on a massive particle, investigators sometimes use a representation of 
the form (18) and even explain some of the observed features of experimental cross 
sections with the aid of the scattering process involving a heavy particle (the second 
term in equation (18)). 

The second example where the results of the present paper should be taken into 
account pertains to the problems of scattering of four and more particles. Here, in 
describing the asymptotic state of particles scattered in two independent subsystems, 
it becomes necessary to solve equations equivalent to the system (7). As has been 
demonstrated in § 2, the required physical solution of this system can be found in 
terms of generalised functions rather than in terms of usual functions. 

We would like to emphasise the following. In this paper the reaction 1 + 2 + 3  
1 + 2 + 3 (so-called free-free process) has been considered, as an example. Neverthe- 
less, the conclusions are universal. In fact, by obtaining the amplitudes of reactions 
with the bound states in the initial or final state we have to project the free-free 
amplitude upon a suitable subspace and pass to the on-shell limit, but the off-shell 
amplitudes in the equations can be singular functions. To demonstrate this let us 
consider the triangle diagram for the elastic scattering 1 + (2, 3) + 1 + (2 ,3)  by M3 + 00 

and Vl2=O: 

where %(q)  is the form factor normalised with the condition 
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and p ,  p ‘  are initial and final momenta of particle 1. If E = - - ~ ~ + ( p ’ / 2 m ) =  
- ~ ~ + ( p ’ ’ / 2 m )  then (19 )  is a well defined function. In other cases the amplitude T 
has a pole at p 2  = p ” .  This singularity takes place also in high-order diagrams. 
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